If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8w^2+51w-35=0
a = 8; b = 51; c = -35;
Δ = b2-4ac
Δ = 512-4·8·(-35)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(51)-61}{2*8}=\frac{-112}{16} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(51)+61}{2*8}=\frac{10}{16} =5/8 $
| X+9x=2452.50 | | -x=1x= | | 4(d+7)d=-2 | | 4r+12/16=2r-6/2 | | 12(5x)+2=62 | | 0.67=x-450/50 | | 4q^2-16q+15=0 | | -17-7m=118 | | 3w*w=588 | | 3y+7y=14 | | X^2+x^2+149=169 | | x/6.5=-1.60 | | 4(x-1)+2×=3×-2 | | x/1.90=3.5 | | 48x²+240x-108000=0 | | 3x-2=4(×-1)+2× | | 5*(12)=x*(4+x) | | 3x-7+8=10x-5 | | 60=4x+x2 | | 4x+159=180 | | d+3-7=10 | | 0.88=18/y | | 45-y=4y | | 12u=6+9u | | 13y-31=70 | | x/2.60=7.5 | | x/1.40=7.5 | | 420=21g | | 342=18y | | x5=8+12 | | -6(x+-3)+7=-5 | | 5x-3=(x+3)+3x |